Segment-specific effects of FMRFamide on membrane properties of heart interneurons in the leech.

نویسندگان

  • J Schmidt
  • S Gramoll
  • R L Calabrese
چکیده

1. The effects of Phe-Met-Arg-Phe (FMRF)amide (10(-6) M) on membrane properties of heart interneurons in the third, fourth, and fifth segmental ganglia [HN(3), HN(4), and HN(5) cells, respectively] of the leech were studied using discontinuous current-clamp and single-electrode voltage-clamp techniques. FMRFamide was focally applied onto the soma of the cell under investigation. 2. Application of FMRFamide depolarized HN(3) and HN(4) cells by evoking an inward current. These responses were subject to pronounced desensitization. The inward currents evoked by application of FMRFamide were associated with an increase in membrane conductance and appeared to be voltage dependent. Currents were enhanced at more depolarized potentials. 3. The responsiveness of the HN(3) and HN(4) cells was not affected when the Ca2+ concentration in the bath saline was reduced from normal (1.8 mM) to 0.1 mM. The depolarizing response on application of FMRFamide was blocked when Co2+ was substituted for Ca2+. 4. HN(3) and HN(4) cells did not respond to FMRFamide application in Na(+)-free solution. Inward currents were largely reduced when bath saline with 30% of the normal Na+ concentration was used. When Li+ was substituted for Na+ in the saline, application of FMRFamide still evoked depolarizing responses in HN(3) and HN(4) cells. 5. We conclude that focal application of FMRFamide onto the somata of HN(3) and HN(4) cells evokes a voltage-dependent inward current, carried largely by Na+. 6. Focal application of FMRFamide onto somata of HN(5) cells hyperpolarized these cells by activating a voltage-dependent outward current. 7. HN(5) cells were loaded with Cl- until inhibitory postsynaptic potentials carried by Cl- reversed. Cl(-)-loaded cells still responded with a hyperpolarization when FMRFamide was applied onto their somata. Therefore the outward current evoked by FMRFamide appears to be mediated by a K+ conductance increase. 8. Application of FMRFamide onto the somata of HN(5) cells enhanced outward currents that were evoked by depolarizing voltage steps from a holding potential of -45 mV. 9. We conclude that the hyperpolarizing response of HN(5) cells to focal application of FMRFamide onto their somata is the result of an up-regulation of a voltage-dependent K+ current.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FlMRFamide Effects on Membrane Properties of Heart Cells Isolated From the Leech, Himdo medicinalis

1. The effects of the cardioactive peptide FMRFamide were tested on enzymatically dissociated muscle cells isolated from hearts of the leech. These cells were normally quiescent, with resting potentials near -60 mV. 2. Superfusion of FMRFamide induced a strong depolarization in isolated heart cells (e.g., >40 mV with 10v6 M FMRFamide). The depolarization was maintained in the continued presence...

متن کامل

A slow outward current activated by FMRFamide in heart interneurons of the medicinal leech.

The endogenous neuropeptide FMRFamide (Phe-Met-Arg-Phe-NH2) can accelerate the oscillation of reciprocally inhibitory pairs of interneurons that pace heartbeat in the medicinal leech. A model based on all available biophysical data of a two-cell heart interneuron oscillator provides a theoretical basis for understanding this modulation. Previously observed modulation of K+ currents by FMRFamide...

متن کامل

FMRFamide-like substances in the leech. III. Biochemical characterization and physiological effects.

FMRFamide-like immunoreactivity has been previously localized to identified neurons in the CNS of the leech, Hirudo medicinalis (Kuhlman et al., 1985a). These leech antigens have been characterized biochemically by reverse-phase high-pressure liquid chromatography (HPLC) followed by radioimmunoassay (RIA). The majority of the FMRFamide-like immunoreactivity recovered by HPLC from extracts of le...

متن کامل

Modulatory effects of FMRF-NH2 on outward currents and oscillatory activity in heart interneurons of the medicinal leech.

Using single-electrode voltage clamp, heart interneurons of the medicinal leech were shown to possess both a rapidly inactivating outward current, IA, and a more slowly inactivating outward current, IK. IA and IK could be separated by their voltage sensitivity and kinetic properties. FMRF-NH2 (Phe-Met-Arg-Phe-NH2) modulates IK by shifting both steady state activation and inactivation to more hy...

متن کامل

Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns.

We have analyzed in detail the neuronal network that generates heartbeat in the leech. Reciprocally inhibitory pairs of heart interneurons form oscillators that pace the heartbeat rhythm. Other heart interneurons coordinate these oscillators. These coordinating interneurons, along with the oscillators interneurons, form an eight-cell timing oscillator network for heartbeat. Still other interneu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 74 4  شماره 

صفحات  -

تاریخ انتشار 1995